All news & events

Chronological order of publication in this website

Banner iGE3 - UNIGE

New iGE3 member - Ramesh Pillai

Ramesh Pillai portrait

We are pleased to welcome Prof. Ramesh Pillai as a new faculty member of the iGE3.

Ramesh Pillai is a professor at the Department of Molecular Biology of the Faculty of Science. His group is interested in studying mechanisms by which eukaryotic genomes control gene expression, in particular molecular mechanisms involved in gene regulation by small noncoding RNAs and RNA modifications. His research uses interdisciplinary approaches and different model systems, including flies and mice.

Etat de santé des écosystèmes

Surveiller l’environnement grâce à l’intelligence artificielle

Les micro-organismes remplissent des fonctions clés dans les écosystèmes et leur diversité reflète l’état de santé de leur environnement. Or, ils sont encore largement sous-exploités dans les programmes de biosurveillance actuels, car difficilement identifiables.

Des chercheurs du groupe du Pr Jan Pawlowski de l’Université de Genève ont récemment mis au point une approche combinant deux technologies de pointe pour pallier ce manque. Ils se servent d’outils génomiques pour séquencer l’ADN des micro-organismes dans les prélèvements, puis exploitent cette masse considérable de données grâce à l’intelligence artificielle. Ils construisent ainsi des modèles prédictifs capables d’effectuer un diagnostic de santé des écosystèmes à large échelle et d’identifier les espèces qui remplissent des fonctions importantes. Cette nouvelle approche, publiée dans la revue Trends in Microbiology, permettra d’augmenter considérablement la capacité d’observation d’écosystèmes étendus et de diminuer le temps d’analyse, pour des programmes de biosurveillance de routine beaucoup plus performants.

Cellules épithéliales humaines

Le cheval de Troie du staphylocoque doré

La bactérie Staphylococcus aureus est responsable de nombreux types d’infections parfois mortelles chez l’humain. L’une de ses armes les plus redoutables est l’α-toxine, qui détruit les cellules de l’hôte en formant des pores au niveau de leurs membranes.

Des chercheurs du groupe de la Pre Sandra Citi de l’Université de Genève ont identifié le mécanisme qui permet l’ancrage de ces pores dans la membrane des cellules épithéliales. L’étude, publiée dans la revue Cell Reports, montre comment différentes protéines des cellules humaines s’assemblent en un complexe auquel s’arriment de nombreux pores, avec un verrou moléculaire qui stabilise le tout. Les biologistes démontrent également qu’il suffit de bloquer l’assemblage de deux des pièces du complexe pour que les pores puissent être enlevés de la membrane et que les cellules survivent. Identifier les mécanismes cellulaires de l’hôte qui contribuent à la virulence des toxines devient essentiel pour développer des approches thérapeutiques contre les bactéries résistantes aux antibiotiques.

Neurones dopaminergiques

La dopamine, élément clé de l’addiction à l’héroïne

L’addiction désigne l’envie répétée et irrépressible de faire ou de consommer quelque chose, malgré ses effets délétères. Celle-ci apparaît lorsqu’une substance ou un comportement crée des effets considérés comme positifs par les individus concernés, comme le plaisir ou la récompense, qui renforcent alors les comportements répétitifs. Mais, dans le cerveau, que se passe-t-il ?

En comprenant les processus cérébraux à l’œuvre qui mènent aux puissants effets addictifs de l’héroïne, les scientifiques du groupe du Prof. Christian Lüscher de l’Université de Genève permettent de mieux comprendre ce phénomène. Leurs résultats, à découvrir dans la revue eLife, ouvrent de nouvelles perspectives dans le domaine de la prévention et des traitements de la toxicomanie, mais aussi dans le développement de médicaments analgésiques non addictifs.

Ilot pancréatique de souris

Des cellules changent de métier pour contrer le diabète

Le diabète est caractérisé par une hyperglycémie persistante qui apparaît lorsque certaines cellules du pancréas – les cellules β – sont détruites ou ne sont plus capables de sécréter de l’insuline.

Le groupe du Prof. Pedro Herrera de l’Université de Genève est parvenu à montrer comment une partie des cellules α et δ du pancréas, qui produisent habituellement d’autres hormones, peuvent prendre le relais des cellules β endommagées en se mettant à produire de l’insuline. En observant comment ces cellules parviennent à modifier leur fonction en changeant partiellement d’identité, les chercheurs ont découvert un phénomène de plasticité cellulaire inconnu jusqu’ici. Au-delà du pancréas, cela pourrait concerner bon nombre de nos cellules. Ces résultats, à découvrir dans Nature Cell Biology, permettent d’envisager des stratégies thérapeutiques entièrement nouvelles qui feraient appel aux capacités régénératrices du corps.

Gastruloïde âgé de 7 jours

Des cellules souches s’organisent seules
en pseudo-embryon

Le plan de construction des mammifères est mis en œuvre peu après l’implantation de l’embryon dans l’utérus. Les différents axes du corps, antéro-postérieur, dorso-ventral et medio-latéral, se mettent en place rapidement, sous l’égide de réseaux de gènes qui coordonnent la transcription de l’ADN dans diverses régions de l’embryon au cours du temps.

Les équipes du Prof. Denis Duboule de l’Université de Genève et de l’Ecole Polytechnique Fédérale de Lausanne, et du Prof. Alfonso Martinez Arias de l’Université de Cambridge au Royaume-Uni, ont démontré la capacité de pseudo-embryons de souris à produire la plupart des types de cellules progénitrices nécessaires au développement. Formées à partir de quelque 300 cellules souches embryonnaires seulement, ces structures, appelées gastruloïdes, ont un développement comparable à celui de la partie postérieure d’embryons âgés de 6 à 10 jours. L’étude, publiée dans la revue Nature, montre que la formation des trois axes embryonnaires principaux se déroule selon un programme d’expression des gènes similaire à celui des embryons. Les gastruloïdes possèdent ainsi un potentiel remarquable pour l’étude des stades précoces du développement embryonnaire et de ses anomalies.

Winners of the 6th PhD Salary Awards

6th iGE3 PhD Salary Awards - The final selection

We are proud to announce and congratulate the winners of the iGE3 PhD salary awards 2018 !

At the end of this 6th round of selection, 4 PhD awards could be given to graduate students working in the laboratories of iGE3 faculty members for the quality of their application.

The winners are:

The awardees have presented their project during the 7th iGE3 Annual Meeting on Tuesday, November 13, 2018, at the CMU in Geneva.

Détails de la peau d'éléphant

Comment l’éléphant craque sa peau pour se refroidir

La peau des éléphants est couverte de millions de minuscules crevasses qui jouent un rôle primordial dans la régulation de leur chaleur corporelle. En effet, l’éléphant étant dépourvu de glandes sudoripares, il ne peut pas transpirer. Il doit alors s’asperger régulièrement d’eau et ces crevasses lui permettent d’en absorber beaucoup plus et de la conserver plus longtemps que si sa peau était lisse. En s’évaporant, cette eau permet à l’éléphant de ne pas surchauffer dans son environnement chaud et sec.

Des chercheurs du groupe du Prof. Michel Milinkovitch, de l’Université de Genève et du SIB, Institut Suisse de Bioinformatique, ont découvert que ces crevasses sont des fractures dans l’épiderme, profondes d’un millimètre. Ils ont alors analysé la structure des couches de la peau de l’éléphant et ont découvert que celle-ci n’est pas lisse comme chez les êtres humains, mais micro-vallonnée. Ce sont les tensions sur ces bosses et creux, provoquées par l’épaississement naturel de la peau avec l’âge, qui provoquent le craquage de l’épiderme. Ces résultats sont à lire dans la revue Nature Communications.

iGE3 Annual Meeting 2018 banner

7th Annual Meeting of iGE3

Tuesday, November 13, 2018 • 8:30 AM - 6:00 PM
CMU - Room B04.2222 - Building B, 4th floor
Geneva

Participation is free of charge, but registration is required.

Program, registration:

Meeting 2018 website

(disabled)

Event ID: meeting_2018
New registration deadline: Monday, November 12, 2018 - Noon

Organization:

Emi Nagoshi and Denis Jabaudon