News & events - Keyword : Optogenetics

Chronological order of publication in this website

Une souris observatrice et une souris démonstratrice

L’alimentation est-elle un acte social ?

Comment choisissons-nous nos aliments ? En étudiant les mécanismes neurobiologiques impliqués dans les choix alimentaires de rongeurs, des neuroscientifiques du groupe du Prof. Christian Lüscher de l’Université de Genève ont identifiés l’influence importante et durable que peuvent avoir les congénères sur la manière de se nourrir.

En effet, des stimuli sensoriels liés aux contacts sociaux modifient en profondeur les connexions neuronales de circuits impliqués dans le choix des aliments, mettant en évidence la transmission sociale d’une référence alimentaire. De plus, ces travaux, publiés dans la revue Science, soulignent le rôle du lien social dans l’interprétation des stimuli sensoriels et dans la capacité d’adaptation à l’environnement. Ce mécanisme, qui semble déficient chez les personnes souffrant de troubles autistiques, pourrait expliquer en partie leurs difficultés sociales.

OptoDBS 2019 banner

OptoDBS 2019

State of the art of current therapies for deep brain stimulation

Pathological circuit function is at the origin of many symptoms of neurological disorders. The optogenetic toolbox applied to animal models of behavioral diseases has in the last years led to decisive progress with the hope that deep brain stimulation (DBS) may be used for rational treatments.

OptoDBS 2019 will discuss the state of the art of current therapies for DBS and ask how a better understanding of neural circuit dysfunction in pathology could inspire novel protocols. A particular emphasis will be on novel DBS indications such as obsessive compulsive disorders (OCD), depression or addiction. The meeting will take place from June 20 to 22, 2019, at the Campus Biotech in Geneva.

Technique iTango

Un interrupteur pour éclairer les neurones

La transmission de l’information dans le cerveau passe par des molécules neurotransmettrices qui se diffusent à travers la zone de jonction entre deux cellules nerveuses, appelée synapse. Dans certain cas, ces molécules peuvent se répandre dans le tissu, inondant ainsi différents types de cellules nerveuses; on parle alors de neuromodulation. Pour mieux comprendre l’impact des neuromodulateurs sur les circuits cérébraux et sur le comportement, il faut pouvoir identifier les neurones stimulés et suivre ensuite leur activité.

Une collaboration entre l’équipe du Prof. Christian Lüscher de l’Université de Genève et l’Institut Max Planck de Floride pour les neurosciences a permis de résoudre ce problème grâce à une nouvelle technique baptisée iTango, qui permet de contrôler les cellules soumises à la neuromodulation en temps réel. Elle s’appuie sur un système novateur d’expression génétique basé sur la lumière, et permettra aux scientifiques de mieux comprendre les mécanismes de contrôle des circuits cérébraux impliqués, par exemple, dans l’addiction ou dans certains troubles psychiatriques comme la schizophrénie. Des résultats à lire dans Nature Methods.