News & events - Keyword : Genetic variations

Chronological order of publication in this website

Modèle de la double hélice d'ADN

Un gène à l’origine de graves malformations
du visage identifié

Le syndrome de Goldenhar est une maladie congénitale rare, qui apparaît à un stade précoce du développement fœtal. Il est responsable de malformations de gravité variable, touchant différentes parties du visage. Ses causes et modes de transmission sont encore mal connus.

L’ancienne équipe du Prof. Stylianos Antonarakis de l’Université de Genève, et un groupe de l’Université Beihang en Chine, ont découvert que des variantes pathogènes du gène FOXI3 – responsable du développement de l’oreille – sont des facteurs déclenchants. Les scientifiques sont également parvenu-es à identifier les modes de transmission de la maladie, lorsque ce gène précis est impliqué. Ces résultats sont à découvrir dans Nature Communications.

Bannière UNIGE - Faculté de Médecine

Prix Curt Stern à Emmanouil Dermitzakis

Emmanouil Dermitzakis lauréat du Prix Curt Stern 2021 décerné par l’ASHG

Portrait de Emmanouil Dermitzakis

La Société Américaine de Génétique Humaine - American Society of Human Genetics (ASHG) attribue le Prix Curt Stern 2021 au Pr Emmanouil T. Dermitzakis, du Département de Médecine Génétique et Développement de la Faculté de Médecine de l’UNIGE, directeur d’iGE3. Ce prix annuel rend hommage au généticien Curt Stern et récompense les chercheuses et chercheurs en génétique et en génomique qui ont apporté des contributions scientifiques importantes au cours de la dernière décennie.

Emmanouil Dermitzakis est l’un des spécialistes mondiaux de la variation fonctionnelle du génome humain et du potentiel transrégulateur du génome. Il a été l’un des premiers scientifiques à révéler l’importance de l'ADN non codant dans l’évolution et la susceptibilité aux maladies. Ses travaux fondamentaux sur l’évolution des éléments régulateurs ont ainsi montré la nature dynamique des séquences régulatrices. Il a par ailleurs joué un rôle de premier plan dans de nombreux grands projets internationaux de génétique. Nous le félicitons pour cette distinction.

Modélisation des liaisons HLA-peptides

Les ailes d’un «oiseau génétique»
nous protègent contre les virus

Les populations de diverses régions géographiques ont-elles le même potentiel pour se défendre contre les pathogènes, et plus particulièrement contre les virus ? Analyser les génomes humains, notamment au niveau des gènes HLA responsables du système immunitaire dit adaptatif, permet d’apporter des éléments de réponse. Ces gènes, qui présentent une très grande variabilité entre individus, codent pour des molécules capables de reconnaître les différents virus afin de déclencher la réponse immunitaire appropriée.

Dans une étude à lire dans la revue Molecular Biology and Evolution, des scientifiques du groupe de la Pre Alicia Sanchez-Mazas de l’Université de Genève, en collaboration avec l’Université de Cambridge (Royaume-Uni), identifient les variants HLA se liant le plus efficacement à des familles de virus. Ils démontrent ainsi que malgré la grande hétérogénéité des variants HLA chez les individus, toutes les populations bénéficient d’un potentiel équivalent dans la protection contre les virus.

Schéma d’une molécule HLA

Nous ne sommes pas tous égaux face au coronavirus

Existe-t-il des différences d’immunité face au coronavirus SARS-CoV-2 entre populations de diverses régions géographiques ? Une partie de la réponse est à rechercher dans les génomes de ces groupes de personnes et, plus particulièrement, dans les gènes HLA, responsables du système immunitaire dit adaptatif. Ces gènes ont la particularité de différer souvent entre individus. Des milliers de variants (ou allèles) possibles ont été identifiés et tous ne possèdent pas la même efficacité pour lutter contre un nouveau virus. La fréquence de ces allèles varie d’une population à l’autre du fait des migrations passées et de leur adaptation à divers environnements.

Dans une étude à lire dans la revue HLA, des scientifiques du groupe de la Pre Alicia Sanchez-Mazas de l’Université de Genève, en collaboration avec l’Institut Max Planck de Jéna, Allemagne, et l’Université d’Adélaïde, Australie, identifient les variants HLA potentiellement les plus efficaces contre 7 virus, dont le nouveau coronavirus, et mettent en lumière des variations significatives entre populations.

Génomique et bioinformatique

SHAPEIT4: un algorithme pour la génomique
à grande échelle

Les haplotypes constituent un ensemble de variations génétiques qui, situés côte à côte sur un même chromosome, sont transmis en un seul groupe à la génération suivant. Leur examen permet de comprendre l’héritabilité de certains traits complexes, comme par exemple le risque de développer plus tard une maladie. Cependant, pour effectuer cette analyse, il faut généralement disposer du génome des membres d’une même famille (les parents et leur enfant), un procédé long et cher.

Pour contourner ce problème, des chercheurs des groupes du Prof. Emmanouil Dermitzakis de l'Université de Genève et du Prof. Olivier Delaneau de l'Université de Lausanne, tous deux également au SIB, Institut Suisse de Bioinformatique, ont mis au point SHAPEIT4, un puissant algorithme informatique permettant d’identifier très rapidement les haplotypes de centaines de milliers d’individus sans lien familiaux, avec un résultat aussi fin que dans le cadre d’analyses familiales impossibles à mener à si large échelle. Leur outil est maintenant disponible en ligne sous licence open source, à la disposition libre de l’ensemble de la communauté des chercheurs. A découvrir dans la revue Nature Communications.

Représentation 3D de la chromatine

Un modèle pour déchiffrer la complexité
de la régulation des gènes

Plus que les gènes eux-mêmes, comment, où et quand ils s’expriment déterminent nos traits biologiques - nos phénotypes. Si l’expression des gènes est contrôlée par de nombreux éléments de régulation, qu’est-ce qui, en fin de compte, contrôle ces derniers ? Comment les variations génétiques les affectent-elles ?

Le projet SysGenetiX, mené par l’Université de Genève, en collaboration avec l’Université de Lausanne, vise précisément à étudier ces éléments de régulation, ainsi que les multiples interactions entre eux et avec les gènes. L’objectif ? Comprendre les mécanismes qui rendent des personnes plus prédisposées que d’autres à la manifestation de certaines maladies.

En étudiant les modifications de la chromatine (ou comment le génome est «empaqueté») dans les cellules d’environ 300 individus, les équipes genevoise du Prof. Emmanouil Dermitzakis et lausannoise du Prof. Alexandre Reymond, en collaboration avec le groupe du Prof. Stylianos Antonarakis de l'Université de Genève, ont non seulement identifié la structure même de ces éléments régulateurs, mais ils ont également pu modéliser comment leurs interactions sur l’ensemble du génome influencent la régulation des gènes et le risque de maladie. Une approche pionnière, à lire dans le journal Science, qui façonnera la médecine de précision de demain.

Médecine et génétique

La lecture des variants génomiques ouvre la voie
à la médecine prédictive

L’équipe du Prof. Emmanouil Dermitzakis de l’Université de Genève a fait un pas important vers une véritable médecine prédictive en explorant les liens entre maladie et activité génétique dans différents tissus. Ils ont ainsi construit un modèle, première étape pour identifier dans le génome non codant les séquences indiquant un effet pathogène lié à une maladie.

Dans une deuxième étude, ils ont été encore plus loin en associant le risque de développer une maladie - notamment la schizophrénie, les maladies cardiovasculaires ou encore le diabète – à la variabilité de l’activité du génome dans différents types de cellules. Et leurs résultats ont apporté quelques surprises. Leurs découvertes, à lire dans Nature Genetics, pourrait bien révolutionner la manière dont chacun d’entre nous, selon son génome, prendra à l’avenir soin de sa santé.

Modèle de la double hélice d'ADN

Parution d’un atlas des variations génétiques

Le projet international GTEx (pour Genotype-Tissue Expression), lancé en 2010, co-dirigé par le Prof. Emmanouil Dermitzakis de l’Université de Genève et financé par les National Institutes of Health (NIH) américains, arrive à son terme. Le consortium qui le constitue a publié le 11 octobre 2017 dans la revue Nature l’apogée de ses travaux: un atlas détaillé qui documente les séquences d’ADN influençant l’expression des gènes, c’est-à-dire la manière dont le génome d’une personne engendre un trait observable, de la couleur de ses cheveux aux maladies qui peuvent l’affecter.

Cet atlas constitue une ressource d’une richesse inestimable mise à la disposition des scientifiques qui s’intéressent à la manière dont les variations génomiques individuelles - notamment entre les différents tissus - influencent l’activation des gènes et, en conséquence, les différences biologiques.