Publications

Chronological order of publication in this website

Poils de mouche et cancer

Ce qu'un poil de mouche nous apprend du cancer

Au début, tout est simple: les cellules se divisent en deux cellules identiques qui se divisent à leur tour, permettant ainsi à n’importe quel tissu de croître de façon exponentielle. Mais vient le moment où certaines d’entre elles doivent se spécialiser, où, sur le dos d’une mouche, une cellule doit «savoir» qu’en se scindant, elle donnera naissance à deux cellules fondamentalement différentes: un poil et un neurone.

Comment fonctionnent ces divisions asymétriques ? Comment une cellule mère peut-elle se scinder en deux «filles» aussi différentes ? Le groupe de Prof. Marcos González-Gaitán, de l’Université de Genève, s'est attelé à comprendre ce mécanisme jusque dans ses moindres détails tant ses enjeux sont importants: une cellule souche qui rate sa division asymétrique peut générer des cellules cancéreuses qui se reproduisent exponentiellement et former une tumeur. Les résultats de leur plus récente recherche, à lire dans Nature Communications, montrent comment l’information nécessaire circule au sein de la cellule mère, lui permettant de réussir cette division asymétrique.

Foie et biorythmes

Le foie grossit de moitié au cours de la journée

Chez les mammifères, le foie joue un rôle essentiel dans le métabolisme et l’élimination des toxines, et atteint son efficacité maximale lorsqu’ils se nourrissent et sont actifs.

Le groupe du Prof. Ueli Schibler, de l’Université de Genève, a découvert comment cet organe s’adapte aux cycles d’alimentation et de jeûne et à l’alternance du jour et de la nuit au cours de 24 heures. Les chercheurs ont montré chez la souris que la taille du foie augmente de près de moitié pour revenir à son niveau initial selon les phases d’activité et de repos. Publiée dans la revue Cell, leur étude décrit les mécanismes cellulaires de cette fluctuation, qui disparaît lorsque le rythme biologique normal est inversé. Le dérèglement de notre horloge circadienne dans le cadre professionnel ou privé a donc probablement des répercussions importantes sur nos fonctions hépatiques.

Couleur de la peau chez le lézard

Quand un lézard réconcilie la biologie et les mathématiques

Chez tous les animaux, du poisson clown au léopard, les changements de couleur de peau et les dessins qu’ils produisent sont dus à des interactions microscopiques qui se déroulent au niveau cellulaire et que décrivent parfaitement les équations du mathématicien Alan Turing.

Mais chez le lézard ocellé, le mécanisme est différent, comme l’a montré le groupe du Prof. Michel Milinkovitch, de l’Université de Genève et de l'Institut Suisse de Bioinformatique (SIB). Le passage de l’animal du brun, lorsqu’il est jeune, à un dessin vert et noir à l’âge adulte ne se produit pas seulement au niveau cellulaire, mais également à l’échelle des écailles toutes entières, qui changent de couleur une à une. Les équations de Turing sont impuissantes à modéliser ce phénomène. Pour le décrire, il faut se tourner vers un autre mathématicien, John von Neumann, et ses «automates cellulaires», un système de calcul ésotérique inventé en 1948. Pour la première fois, une recherche orientée vers la biologie permet de lier le travail de ces deux géants des mathématiques, à découvrir dans le journal Nature.

Technique iTango

Un interrupteur pour éclairer les neurones

La transmission de l’information dans le cerveau passe par des molécules neurotransmettrices qui se diffusent à travers la zone de jonction entre deux cellules nerveuses, appelée synapse. Dans certain cas, ces molécules peuvent se répandre dans le tissu, inondant ainsi différents types de cellules nerveuses; on parle alors de neuromodulation. Pour mieux comprendre l’impact des neuromodulateurs sur les circuits cérébraux et sur le comportement, il faut pouvoir identifier les neurones stimulés et suivre ensuite leur activité.

Une collaboration entre l’équipe du Prof. Christian Lüscher de l’Université de Genève et l’Institut Max Planck de Floride pour les neurosciences a permis de résoudre ce problème grâce à une nouvelle technique baptisée iTango, qui permet de contrôler les cellules soumises à la neuromodulation en temps réel. Elle s’appuie sur un système novateur d’expression génétique basé sur la lumière, et permettra aux scientifiques de mieux comprendre les mécanismes de contrôle des circuits cérébraux impliqués, par exemple, dans l’addiction ou dans certains troubles psychiatriques comme la schizophrénie. Des résultats à lire dans Nature Methods.