Lay public

Chronological order of publication in this website

Bannière Soirée publique au Bioscope

Soirée publique: Découvrir la médecine personnalisée,
un exemple en oncologie

Séquençage à haut débit, génomique, big data... La médecine personnalisée repose sur des technologies de pointe. Quelles implications dans le traitement des cancers ? Des thérapies sur mesure à partir de l'information contenue dans notre ADN... est-ce une réalité ?

Venez aborder ces questions à l'aide d'ateliers pratiques et de discussions, lors de la prochaine soirée publique du Bioscope.

Mardi 26 mars 2019 - 18 h à 20 h
Centre Médical Universitaire (CMU)
9, avenue de Champel
1206 Genève

  • Rendez-vous au 9, avenue de Champel, cour du CMU.
  • Inscription (gratuite) obligatoire.
Placodes d'embryon de poulet

La savante organisation des plumes des oiseaux

Comment se forment les plumes et qu’est-ce qui détermine leur nombre et leur disposition? Jusqu’à présent, les moyens technologiques ne permettaient pas d’étudier la formation du plumage des volatiles.

Aujourd’hui, des chercheurs des groupes du Prof. Michel Milinkovitch de l’Université de Genève et du Dr Denis Headon de l’Université d’Édimbourg (Ecosse) ont pu démontrer que la signalisation génétique entre les cellules et des processus mécaniques se combinent pour former dans la peau des volatiles une ligne de propagation, le long de laquelle les ébauches de plumes se développent. Il en résulte un réseau hexagonal très ordonné de plumes. Les chercheurs relèvent également que cette vague de développement n’existe pas chez d’autres oiseaux, tels les émeus et les autruches, ayant perdu leur capacité de voler. Des résultats à lire dans la revue PLOS Biology.

Pseudo-îlots de cellules alpha humaines

Les cellules humaines peuvent aussi changer de métier

Les manuels de biologie nous apprennent que les cellules, une fois différenciées, restent figées dans l’identité qu’elles ont acquise.

En incitant des cellules pancréatiques humaines non productrices d’insuline à modifier leur fonction pour fabriquer cette hormone de manière durable, des chercheurs du groupe du Prof. Pedro Herrera de l’Université de Genève démontrent pour la première fois que la capacité d’adaptation de nos cellules est bien plus grande qu’on ne le pensait. De plus, cette plasticité ne serait pas une exclusivité des cellules du pancréas humain. Une véritable révolution pour la biologie cellulaire, à découvrir dans la revue Nature. Ce type de conversion cellulaire pourrait compenser la perte ou la dysfonction des cellules produisant naturellement l’insuline, lors d’un diabète.

Bannière Semaine du Cerveau 2019

Semaine du Cerveau 2019

Vivre ensemble

La Semaine internationale du Cerveau se déroule chaque année dans plusieurs villes de Suisse. A Genève, cet événement est organisé par le Centre Interfacultaire de Neurosciences. Vivre ensemble en est le thème en 2019.

Des conférences pour le grand public sont proposées chaque soir de la semaine du lundi 11 au vendredi 15 mars 2019, à 19 h 00 à Uni Dufour, Auditoire Piaget / U600.

Expression de la protéine Not1

Un échafaudage solide pour nos cellules

Pour exécuter correctement la tâche pour laquelle elles ont été synthétisées, les protéines doivent d’abord s’assembler pour constituer des «machines» cellulaires efficaces. Mais comment font-elles pour reconnaître leurs partenaires au bon moment ?

Des chercheurs du groupe de la Pre Martine Collart de l’Université de Genève décryptent le rôle fondamental de la protéine Not1, conservée dans tous les organismes eucaryotes: en régulant l’activité des ribosomes - les «usines à protéines» de nos cellules - Not1 permet aux protéines devant travailler ensemble d’être synthétisées au même endroit et au même moment. En identifiant ce mécanisme inconnu jusqu’ici, les scientifiques genevois permettent de mieux comprendre l’un des éléments les plus fondamentaux de la machinerie cellulaire, qui, s’il dysfonctionne, pourrait être à l’origine de nombreuses pathologies. Des résultats à découvrir dans la revue Nature Structural & Molecular Biology.

Noyau, cil et centrioles de cellules humaines.

Comment se forment nos antennes cellulaires

La plupart de nos cellules contiennent un cil primaire immobile, une antenne servant notamment au transfert d’informations provenant du milieu environnant. Certaines cellules possèdent également de nombreux cils mobiles qui servent à générer un mouvement. Le «squelette» des cils est constitué de doublets de microtubules, des «paires» de protéines essentielles à leur formation et à leurs fonctions. Des défauts d’assemblage ou de fonctionnement des cils peuvent en effet provoquer diverses pathologies appelées ciliopathies.

Des scientifiques du groupe du Prof. Paul Guichard de l’Université de Genève ont développé un système in vitro capable de former des doublets de microtubules et ils ont mis en évidence leurs mécanisme et dynamique d’assemblage. Leur étude, publiée dans la revue Science, révèle le rôle crucial de la tubuline, véritable brique de construction, dans la prévention de la formation incontrôlée des structures ciliaires. Cette méthode permettra de découvrir et d’exploiter d’éventuelles différences entre les cils de cellules humaines et ceux de pathogènes pour la mise au point de nouveaux traitements.

Hydre à deux têtes

Pourquoi les hydres n’ont finalement qu’une tête

L’Hydre d’eau douce est capable de régénérer n’importe quelle partie de son corps pour reconstituer un individu entier. Le petit polype possède un centre organisateur de développement situé au niveau de la tête, et un autre localisé dans le pied. L’organisateur de tête exerce deux activités opposées, l’une activatrice, qui provoque la différentiation de la tête, et l’autre inhibitrice, qui prévient la formation de têtes surnuméraires.

Des scientifiques du groupe de la Pre Brigitte Galliot de l’Université de Genève ont découvert l’identité de l’inhibiteur, une protéine appelée Sp5, et déchiffré le dialogue entre ces deux activités antagonistes qui permet de maintenir un corps adulte à une seule tête et d’organiser une réponse de régénération appropriée. Publiée dans la revue Nature Communications, leur étude souligne que ce mécanisme a été conservé au cours de l’évolution, tant chez l’Hydre que l’humain. Sp5 pourrait donc être un excellent candidat à tester comme inhibiteur des tumeurs humaines dont la voie activatrice est le moteur de prolifération.

Coupe d’un cerveau de souris

Drogue: le circuit de l’addiction identifié

Que se passe-t-il dans le cerveau d’une personne qui se drogue de manière compulsive ? Ce fonctionnement diffère-t-il chez une personne qui consomme de la drogue de manière contrôlée ?

Pour résoudre cette énigme, des neurobiologistes du groupe du Prof. Christian Lüscher de l’Université de Genève se sont intéressés aux différences du fonctionnement cérébral entre ces deux catégories. Ils ont ainsi découvert que chez les consommateurs compulsifs, le circuit cérébral reliant la zone de la prise de décision au système de récompense est renforcé. Dans un modèle d’addiction chez la souris, ils ont aussi constaté qu’en diminuant l’activité de ce circuit, les souris compulsives parvenaient à se gérer et qu’inversement, en la stimulant, une souris qui initialement perdait le contrôle, devenait accro. Cette découverte majeure est à lire dans la revue Nature.

Bannière conférences (culture&rencontre) 2019

L’évolution génétique des humains
sous la loupe du numérique

Les Grands Soirs - Conférences (culture&rencontre) 2019

Pre Alicia Sanchez-Mazas
Département de Génétique et Evolution, Faculté des Sciences, UNIGE, membre d'iGE3

Conférence donnée dans le cadre des Grands Soirs UNIGE, cycles de conférences scientifiques organisés par (culture&rencontre) en collaboration avec l’Université de Genève, intitulé cette année L'Humanité numérique - L'informatique au service du vivant.

Mercredi 30 janvier 2019 - 20 h 00
Aula du Collège de Saussure
9, Vieux-Chemin-d'Onex
1213 Petit-Lancy

Caryotype de la femme

Comment la génétique devient égalitaire

En biologie cellulaire, les hommes et les femmes sont inégaux: les hommes possèdent un chromosome X, alors que les femmes ont en deux. Comment pallier cette différence ?

En se fondant sur d’anciens travaux datant des années soixante, des généticiens de l'ancien groupe du Prof. Stylianos Antonarakis de l’Université de Genève ont séquencé une par une des cellules de la peau et du sang et ont observé comment le deuxième chromosome X des femmes s’inactivait graduellement pour éviter une surdose des gènes codés par le X. Ils ont également constaté que plusieurs gènes échappaient à cette inactivation et que celle-ci variait selon le tissu et les phases de la vie de la cellule. Ces travaux permettent d’expliquer les inégalités observées entre les hommes et les femmes face aux maladies génétiques. Des résultats à lire dans la revue PNAS.