News & events - Topic : Research

Chronological order of publication in this website

Coupe d’un cerveau de souris

Drogue: le circuit de l’addiction identifié

Que se passe-t-il dans le cerveau d’une personne qui se drogue de manière compulsive ? Ce fonctionnement diffère-t-il chez une personne qui consomme de la drogue de manière contrôlée ?

Pour résoudre cette énigme, des neurobiologistes du groupe du Prof. Christian Lüscher de l’Université de Genève se sont intéressés aux différences du fonctionnement cérébral entre ces deux catégories. Ils ont ainsi découvert que chez les consommateurs compulsifs, le circuit cérébral reliant la zone de la prise de décision au système de récompense est renforcé. Dans un modèle d’addiction chez la souris, ils ont aussi constaté qu’en diminuant l’activité de ce circuit, les souris compulsives parvenaient à se gérer et qu’inversement, en la stimulant, une souris qui initialement perdait le contrôle, devenait accro. Cette découverte majeure est à lire dans la revue Nature.

Caryotype de la femme

Comment la génétique devient égalitaire

En biologie cellulaire, les hommes et les femmes sont inégaux: les hommes possèdent un chromosome X, alors que les femmes ont en deux. Comment pallier cette différence ?

En se fondant sur d’anciens travaux datant des années soixante, des généticiens de l'ancien groupe du Prof. Stylianos Antonarakis de l’Université de Genève ont séquencé une par une des cellules de la peau et du sang et ont observé comment le deuxième chromosome X des femmes s’inactivait graduellement pour éviter une surdose des gènes codés par le X. Ils ont également constaté que plusieurs gènes échappaient à cette inactivation et que celle-ci variait selon le tissu et les phases de la vie de la cellule. Ces travaux permettent d’expliquer les inégalités observées entre les hommes et les femmes face aux maladies génétiques. Des résultats à lire dans la revue PNAS.

Centrosome révélé par 3 techniques

Gonfler nos cellules pour observer leur vie intérieure

Les cellules sont constituées de minuscules compartiments, les organites, qui ont des structures et des rôles précis. Pouvoir observer ces structures représente un énorme défi et permettrait de mieux appréhender le fonctionnement cellulaire. Or, jusqu’à présent, la microscopie à fluorescence n’offrait pas de résolution suffisante pour obtenir une visualisation détaillée de l’ultrastructure des organites.

Aujourd’hui, des chercheurs du groupe du Pr Paul Guichard de l’Université de Genève ont réussi à agrandir des échantillons biologiques sans les déformer et à en révéler des détails à une échelle nanométrique, soit du millionième de millimètre. Une résolution inégalée en microscopie optique. Décrite dans la revue Nature Methods, cette nouvelle technique permet de visualiser l’architecture et la composition des organites, ainsi que celles de complexes protéiques de natures diverses. Des modifications biochimiques présentes sur leurs composants peuvent également être détectées dans un contexte tridimensionnel, à des fins de cartographie.

Etat de santé des écosystèmes

Surveiller l’environnement grâce à l’intelligence artificielle

Les micro-organismes remplissent des fonctions clés dans les écosystèmes et leur diversité reflète l’état de santé de leur environnement. Or, ils sont encore largement sous-exploités dans les programmes de biosurveillance actuels, car difficilement identifiables.

Des chercheurs du groupe du Pr Jan Pawlowski de l’Université de Genève ont récemment mis au point une approche combinant deux technologies de pointe pour pallier ce manque. Ils se servent d’outils génomiques pour séquencer l’ADN des micro-organismes dans les prélèvements, puis exploitent cette masse considérable de données grâce à l’intelligence artificielle. Ils construisent ainsi des modèles prédictifs capables d’effectuer un diagnostic de santé des écosystèmes à large échelle et d’identifier les espèces qui remplissent des fonctions importantes. Cette nouvelle approche, publiée dans la revue Trends in Microbiology, permettra d’augmenter considérablement la capacité d’observation d’écosystèmes étendus et de diminuer le temps d’analyse, pour des programmes de biosurveillance de routine beaucoup plus performants.

Cellules épithéliales humaines

Le cheval de Troie du staphylocoque doré

La bactérie Staphylococcus aureus est responsable de nombreux types d’infections parfois mortelles chez l’humain. L’une de ses armes les plus redoutables est l’α-toxine, qui détruit les cellules de l’hôte en formant des pores au niveau de leurs membranes.

Des chercheurs du groupe de la Pre Sandra Citi de l’Université de Genève ont identifié le mécanisme qui permet l’ancrage de ces pores dans la membrane des cellules épithéliales. L’étude, publiée dans la revue Cell Reports, montre comment différentes protéines des cellules humaines s’assemblent en un complexe auquel s’arriment de nombreux pores, avec un verrou moléculaire qui stabilise le tout. Les biologistes démontrent également qu’il suffit de bloquer l’assemblage de deux des pièces du complexe pour que les pores puissent être enlevés de la membrane et que les cellules survivent. Identifier les mécanismes cellulaires de l’hôte qui contribuent à la virulence des toxines devient essentiel pour développer des approches thérapeutiques contre les bactéries résistantes aux antibiotiques.

Neurones dopaminergiques

La dopamine, élément clé de l’addiction à l’héroïne

L’addiction désigne l’envie répétée et irrépressible de faire ou de consommer quelque chose, malgré ses effets délétères. Celle-ci apparaît lorsqu’une substance ou un comportement crée des effets considérés comme positifs par les individus concernés, comme le plaisir ou la récompense, qui renforcent alors les comportements répétitifs. Mais, dans le cerveau, que se passe-t-il ?

En comprenant les processus cérébraux à l’œuvre qui mènent aux puissants effets addictifs de l’héroïne, les scientifiques du groupe du Prof. Christian Lüscher de l’Université de Genève permettent de mieux comprendre ce phénomène. Leurs résultats, à découvrir dans la revue eLife, ouvrent de nouvelles perspectives dans le domaine de la prévention et des traitements de la toxicomanie, mais aussi dans le développement de médicaments analgésiques non addictifs.

Ilot pancréatique de souris

Des cellules changent de métier pour contrer le diabète

Le diabète est caractérisé par une hyperglycémie persistante qui apparaît lorsque certaines cellules du pancréas – les cellules β – sont détruites ou ne sont plus capables de sécréter de l’insuline.

Le groupe du Prof. Pedro Herrera de l’Université de Genève est parvenu à montrer comment une partie des cellules α et δ du pancréas, qui produisent habituellement d’autres hormones, peuvent prendre le relais des cellules β endommagées en se mettant à produire de l’insuline. En observant comment ces cellules parviennent à modifier leur fonction en changeant partiellement d’identité, les chercheurs ont découvert un phénomène de plasticité cellulaire inconnu jusqu’ici. Au-delà du pancréas, cela pourrait concerner bon nombre de nos cellules. Ces résultats, à découvrir dans Nature Cell Biology, permettent d’envisager des stratégies thérapeutiques entièrement nouvelles qui feraient appel aux capacités régénératrices du corps.

Gastruloïde âgé de 7 jours

Des cellules souches s’organisent seules
en pseudo-embryon

Le plan de construction des mammifères est mis en œuvre peu après l’implantation de l’embryon dans l’utérus. Les différents axes du corps, antéro-postérieur, dorso-ventral et medio-latéral, se mettent en place rapidement, sous l’égide de réseaux de gènes qui coordonnent la transcription de l’ADN dans diverses régions de l’embryon au cours du temps.

Les équipes du Prof. Denis Duboule de l’Université de Genève et de l’Ecole Polytechnique Fédérale de Lausanne, et du Prof. Alfonso Martinez Arias de l’Université de Cambridge au Royaume-Uni, ont démontré la capacité de pseudo-embryons de souris à produire la plupart des types de cellules progénitrices nécessaires au développement. Formées à partir de quelque 300 cellules souches embryonnaires seulement, ces structures, appelées gastruloïdes, ont un développement comparable à celui de la partie postérieure d’embryons âgés de 6 à 10 jours. L’étude, publiée dans la revue Nature, montre que la formation des trois axes embryonnaires principaux se déroule selon un programme d’expression des gènes similaire à celui des embryons. Les gastruloïdes possèdent ainsi un potentiel remarquable pour l’étude des stades précoces du développement embryonnaire et de ses anomalies.

Détails de la peau d'éléphant

Comment l’éléphant craque sa peau pour se refroidir

La peau des éléphants est couverte de millions de minuscules crevasses qui jouent un rôle primordial dans la régulation de leur chaleur corporelle. En effet, l’éléphant étant dépourvu de glandes sudoripares, il ne peut pas transpirer. Il doit alors s’asperger régulièrement d’eau et ces crevasses lui permettent d’en absorber beaucoup plus et de la conserver plus longtemps que si sa peau était lisse. En s’évaporant, cette eau permet à l’éléphant de ne pas surchauffer dans son environnement chaud et sec.

Des chercheurs du groupe du Prof. Michel Milinkovitch, de l’Université de Genève et du SIB, Institut Suisse de Bioinformatique, ont découvert que ces crevasses sont des fractures dans l’épiderme, profondes d’un millimètre. Ils ont alors analysé la structure des couches de la peau de l’éléphant et ont découvert que celle-ci n’est pas lisse comme chez les êtres humains, mais micro-vallonnée. Ce sont les tensions sur ces bosses et creux, provoquées par l’épaississement naturel de la peau avec l’âge, qui provoquent le craquage de l’épiderme. Ces résultats sont à lire dans la revue Nature Communications.

Fleurs d'Arabidopsis thaliana

Une protéine empêche les plantes de fleurir précocement

L’induction de la floraison a une importance majeure d’un point de vue écologique et agronomique. Une floraison synchronisée et se produisant à point nommé est essentielle pour optimiser la pollinisation et permettre la production et la maturation des semences dans des conditions environnementales favorables. Ce sont des facteurs environnementaux, en particulier la lumière, qui déclenchent ce processus dont les mécanismes ont fait l’objet de nombreuses études. Ces expériences ont toutefois été généralement effectuées en chambre de croissance, en l’absence d’UV-B, un type de rayons qui fait partie intégrante de la lumière du soleil et qui est notamment responsable des coups de soleil.

Des chercheurs du groupe du Prof. Roman Ulm, de l’Université de Genève, ont découvert que les UV-B peuvent être de puissants déclencheurs de floraison, mais qu’une protéine appelée RUP2 bloque leur action pour éviter une floraison précoce. Ces travaux sont publiés dans la revue Genes & Development.