News & events - Keyword : Mitosis

Chronological order of publication in this website

Banner iGE3 - UNIGE

New iGE3 member - Sophie Martin

Sophie Martin portrait

We are pleased to welcome Pre Sophie Martin as a new faculty member of iGE3.

Sophie Martin is a professor at the Department of Molecular and Cellular Biology of the Faculty of Science. She aims to understand how cells polarize, organize their cytoskeleton and their membrane to achieve polarized growth, division and cell fusion. By using a combination of quantitative live-cell imaging, electron microscopy, genetic and biochemical approaches, her lab probes fundamental principles of cell polarization, addresses how cells orient in response to an external stimulus to find a mate for sexual reproduction and studies how cells then fuse together to form the diploid zygote.

Embryons de C. elegans

Physique et biologie explorent ensemble
les mécanismes du vivant

Chacune de nos cellules contient environ 40 millions de protéines qui accomplissent ensemble toutes les tâches nécessaires à sa survie. Pour y parvenir, les différentes protéines doivent être concentrées en quantités spécifiques, au bon endroit au bon moment. Le processus qui permet le déroulement sans accrocs d’une distribution si précise se déroule à des résolutions spatiales si infimes que les outils standard de biologie cellulaire sont souvent incapables de le détecter.

Pour comprendre comment fonctionne ce mécanisme, des scientifiques du groupe de la Pre Monica Gotta de l’Université de Genève ont développé une approche novatrice qui combine des expériences de génétique et de biologie cellulaire à une modélisation faisant appel à la physique. Grâce à des algorithmes spécifiques, ils/elles ont simulé en 3D et sous forme dynamique la formation de gradients de protéines et ont pu expliquer ces phénomènes complexes. De plus, leur modèle peut être adapté à d’autres systèmes biologiques pour étudier la dynamique des protéines. Ces résultats sont à découvrir dans les Proceedings of the National Academy of Sciences.

Caenorhabditis elegans

Les souvenirs hérités d’un site chromosomique

L’hérédité est généralement transmise par les gènes, mais il existe des exceptions à cette règle.

Les équipes du Pr Florian Steiner et de la Pre Monica Gotta de l’Université de Genève se sont intéressées à l’emplacement des centromères - des sites spécifiques au niveau des chromosomes, essentiels à la division cellulaire. Elles ont découvert que chez le petit ver Caenorhabiditis elegans, la transmission de l’emplacement correct de ces sites chez les descendants n’est pas médiée par les gènes, mais par un mécanisme de mémoire épigénétique. Ces travaux sont à lire dans la revue PLOS Biology.

Cerveau normal et cerveau microcéphale

Un ralentissement de la division cellulaire
cause la microcéphalie

La naissance d’un être humain requiert des milliards de divisions cellulaires pour passer d’un ovule fécondé à un bébé. A chacune de ces divisions, le matériel génétique de la cellule mère se duplique pour se répartir équitablement entre les deux nouvelles cellules. Dans le cas de la microcéphalie primaire, une maladie génétique rare mais grave, le ballet de la division cellulaire est déréglé, empêchant le développement adéquat du cerveau.

Des scientifiques du groupe du Prof. Patrick Meraldi de l’Université de Genève, en collaboration avec des chercheurs chinois, ont mis en évidence comment la mutation d’une seule protéine, WDR62, empêche le réseau de câbles chargé de séparer le matériel génétique en deux de se former correctement. Comme la division cellulaire est alors ralentie, le cerveau n’a pas le temps de se construire entièrement. Ces résultats, à lire dans le Journal of Cell Biology, apportent un nouvel éclairage sur le fonctionnement de la division cellulaire, un phénomène également impliqué dans le développement des cancers.

2 cellules-filles de Caulobacter crescentus avec leur flagelle

La douce précision de l’assemblage des flagelles

Afin d’obtenir la machinerie permettant aux bactéries de nager, plus de 50 protéines doivent être assemblées selon une logique et un ordre bien défini pour former le flagelle, l’équivalent cellulaire d’un moteur de bateau. Pour être fonctionnel, le flagelle s’assemble élément par élément, en terminant par l’hélice appelée filament flagellaire composé de six différentes protéines appelée flagellines.

Des microbiologistes du groupe du Prof. Patrick Viollier, de l’Université de Genève, démontrent que l’ajout de sucre sur les flagellines est déterminant pour l’assemblage et la fonctionnalité du flagelle. Cette glycosylation est assurée par l’enzyme FlmG, dont le rôle était jusqu’ici inconnu. Partant de cette observation, accessible dans la revue eLife, les chercheurs⁄euses ont enchaîné avec une autre découverte publiée dans Developmental Cell. Les six flagellines de Caulobacter crescentus, bactérie modèle de ces deux études, contiennent une intruse qui servirait de signal pour enclencher l’assemblage final du flagelle.

Nanocylindre au centre du cytosquelette

Un échafaudage au centre de notre squelette cellulaire

Toutes les cellules animales possèdent une organelle appelée centrosome, essentielle à l’organisation de leur squelette cellulaire. Celui-ci est d’une importance capitale, notamment pour la division cellulaire lors de laquelle il permet le partage fidèle de l’information génétique entre deux cellules filles. Lorsque les cellules ne se divisent plus, les centrioles, structures cylindriques composées de microtubules à la base du centrosome, migrent vers la membrane plasmique et permettent la formation des cils primaires et mobiles, servant respectivement au transfert d’informations et à la genèse du mouvement. Au cours de leurs fonctions biologiques, les centrioles rencontrent de nombreuses forces auxquelles ils doivent résister.

Des scientifiques du groupe du Pr Paul Guichard de l’Université de Genève ont découvert une structure interne au centre de ces nano-cylindres, véritable échafaudage cellulaire maintenant l’intégrité physique de cette organelle. Cette découverte, à lire dans la revue Science Advances, permettra de mieux comprendre les fonctions du centriole et les pathologies associées à son dysfonctionnement.

Division d’une cellule normale et d’une cellule avec stress de réplication

Cancer: à l’origine des mutations génétiques

Quand une cellule se divise pour donner naissance à deux cellules-filles, elle doit répliquer son ADN selon un scénario très précis. En présence d’éléments perturbateurs, les cellules cancéreuses sont incapables de réaliser cette opération de manière optimale et la réplication se déroule alors plus lentement et de manière moins efficace. Ce phénomène porte le nom de stress de réplication. Si on le savait lié à l’augmentation des mutations génétiques, un autre phénomène typique des cellules cancéreuses, le mécanisme à l’œuvre demeurait inconnu jusqu’ici.

En décryptant comment le stress de réplication induit la perte ou le gain de chromosomes entiers chez les cellules-filles des cellules cancéreuses, et en parvenant même à renverser ce phénomène dans ces cellules malades, des chercheurs du groupe du Prof. Patrick Meraldi de l’Université de Genève apportent de nouvelles connaissances qui permettront à terme de mieux diagnostiquer et peut-être de mieux soigner le cancer. Ces travaux sont à découvrir dans la revue Nature Communications.